TOPOLOGY III - BACKPAPER EXAM.

Time: 3 hours

Max. marks:100

[12]

[2+6]

[2 + 8 + 8]

Answer all questions. You may use results proved in class after correctly quoting them. Any other claim must be accompanied by a proof.

(1) Let X be a space and let $S_*(X)$ denote its singular chain complex. For an abelian group G, define

$$h_n(X;G) = H_n(\operatorname{Hom}(G, S_*(X)))$$

where $\text{Hom}(G, S_*(X))$ denotes the chain complex whose *n*-th chain group is $\text{Hom}(G, S_n(X))$ with he obvious boundary map. Compute the groups $h_n(X;G)$ when $G = \mathbb{Z}, \mathbb{Z}_2, \mathbb{Q}$. [6]

- (2) State the Kunneth theorem for singular homology.
 - (a) Compute $\operatorname{Tor}(\mathbb{Z}_2,\mathbb{Z})$, $\operatorname{Tor}(\mathbb{Z},\mathbb{Z}_2)$, $\operatorname{Tor}(\mathbb{Z}_2,\mathbb{Z}_3)$.
 - (b) Compute $H_i(\mathbb{R}P^2 \times \mathbb{R}P^3; G)$ for $G = \mathbb{Z}_2, \mathbb{Z}, \mathbb{Q}$. [4+8+10]
- (3) Define the notion of the degree of a map between two connected closed oriented manifolds.
 (a) Show that if f, g : X → Y are homotopic maps between two closed oriented manifolds, then they have the same degree.
 - (b) Show that if X is a connected closed orientable n-manifold, then there exists a map $f: X \longrightarrow S^n$ of degree 1.
 - (c) Construct a map $g: S^2 \longrightarrow S^2$ of degree 2. [2+4+10+6=22]
- (4) Let X be a connected closed orientable *n*-manifold. Assume that there exists a map $f : S^n \longrightarrow X$ of degree $k \neq 0$. Prove that $H_i(X; \mathbb{Q}) \cong H_i(S^n; \mathbb{Q})$. [12]
- (5) Let $(X, x_0), (Y, y_0)$ be based spaces with X, Y locally compact Hausdorff. Prove that there is bijection

$$[\Sigma(X, x_0), (Y, y_0)] \longrightarrow [(X, x_0), \Omega(Y, y_0)]$$

between the homotopy sets.

(6) Define the term : fibration. Show that the projection

$$(x,y) \in \mathbb{R}^2$$
 : $x \in [0,1], y \le 1-x \} \longrightarrow [0,1]$

to the first factor is a fibration.

{

(7) Define the term: fiber bundle. Show that there are fiber bundles

$$S^1 \hookrightarrow S^{2n+1} \longrightarrow \mathbb{C}P^n, \ SO(n-1) \hookrightarrow SO(n) \longrightarrow S^{n-1}$$

Use the above to compute

- (a) $\pi_i(\mathbb{C}P^n)$ (in terms of those of the homotopy groups of the spheres) and
- (b) $\pi_i(SO(n))$ for $i = 1, 2 \ (n \ge 2)$.